Near Neighbor Join

Herald Kllapi #*!, Boulos Harb *2, Cong Yu **

Dept. of Informatics and Telecommunications, University of Athens
Panepistimiopolis, Ilissia Athens 15784, Greece
'heraldedi.uoa. gr

TWork done while at Google Research.

* Google Research,
75 Ninth Avenue, New York, NY 10011, USA
2 harb@google.com
3 congyu@google.com

Abstract—An increasing number of Web applications such as
friends recommendation depend on the ability to join objects at
scale. The traditional approach taken is nearest neighbor join
(also called similarity join), whose goal is to find, based on a
given join function, the closest set of objects or all the objects
within a distance threshold to each object in the input. The
scalability of techniques utilizing this approach often depends on
the characteristics of the objects and the join function. However,
many real-world join functions are intricately engineered and
constantly evolving, which makes the design of white-box methods
that rely on understanding the join function impractical. Finding
a technique that can join extremely large number of objects with
complex join functions has always been a tough challenge.

In this paper, we propose a practical alternative approach
called near neighbor join that, although does not find the closest
neighbors, finds close neighbors, and can do so at extremely
large scale when the join functions are complex. In particular, we
design and implement a super-scalable system we name SAJ that
is capable of best-effort joining of billions of objects for complex
functions. Extensive experimental analysis over real-world large
datasets shows that SAJ is scalable and generates good results.

I. INTRODUCTION

Join has become one of the most important operations
for Web applications. For example, to provide users with
recommendations, social networking sites routinely compare
the behaviors of hundreds of millions of users [1] to identify,
for each user, a set of similar users. Further, in many search
applications (e.g., [2]), it is often desirable to showcase
additional results among billions of candidates that are related
to those already returned.

The join functions at the core of these applications are often
very complex: they go beyond the database style 6-joins or the
set-similarity style joins. For example, in Google Places, the
similarity of two places are computed based on combinations
of spatial features and content features. For WebTables used
in Table Search [3], the similarity function employs a multi-
kernel SVM machine learning algorithm. Neither function is
easy to analyze.

Furthermore, the needs of such applications change and
the join functions are constantly evolving, which makes it
impractical to use a system that heavily depends on function-
specific optimizations. This complex nature of real-world join
functions makes the join operation especially challenging to

perform at large scale due to its inherently quadratic nature,
i.e., there is no easy way to partition the objects such that only
objects within the same partition need to be compared.

Fortunately, unlike database joins where exact answers are
required, many Web applications accept join results as long
as they are near. For a given object, missing some or even
all of the objects that are nearest to it, is often tolerable if
the objects being returned are almost as near to it as those
that are nearest. Inability to scale to the amount of data those
applications must process, however, is not an option. In fact, a
key objective for all such applications is to balance the result
accuracy and the available machine resources while processing
the data in its entirety.

In this paper, we introduce SAJ!, a Scalable Approximate
Join system that performs near neighbor join of billions
of objects of any type with a broader set of complex join
functions, where the only expectation on the join function is
that it satisfies the triangle inequality?. More specifically, SAJ
aims to solve the following problem: Given (1) a set I of N
objects of type T, where N can be billions; (2) a complex
join function Fy : T'x T — R that takes two objects in I and
returns their similarity; and (3) resource constraints (specified
as machine per-task computation capacity and number of
machines). For all o € I, find k objects in I that are similar to
o according to F; without violating the machine constraints.

As with many other recent parallel computation systems,
SAJ adopts the MapReduce programming model [4]. At a high
level, SAJ operates in two distinct multi-iteration phases. In
the initial Bottom-Up (BU) phase, the set of input objects are
iteratively partitioned and clustered within each partition to
produce a successively smaller set of representatives. Each
representative is associated with a set of objects that are
similar to it within the partitions in the previous iteration.
In the following Top-Down (TD) phase, at each iteration the
most similar pairs of representatives are selected to guide the
comparison of objects they represent in the upcoming iteration.

'In Arabic, Saj is a form of rhymed prose known for its evenness, a
characteristic that our system strives for.

2In fact, even the triangle inequality of the join function is not a strict
requirement within SAJ, it is only needed if a certain level of quality is to be
expected, see Section V.

To achieve true scalability, SAJ respects the resource con-
straints in two critical aspects. First, SAJ strictly adheres to
machine per-task capacity by controlling the partition size
so that it is never larger than the number of objects each
machine can handle. Second, SAJ allows developers during
the TD phase to easily adjust the accuracy requirements in
order to satisfy the resource constraint dictated by the number
of machines. Because of these design principles, in one of
our scalability experiments, SAJ completed a near-k (where
k = 20) join for 1 billion objects within 20 hours.

To the best of our knowledge, our system is the first attempt
at super large scale join without detailed knowledge of the join
function. Our specific contributions are:

o We propose a novel top-down scalable algorithm for se-
lectively comparing promising object pairs starting with a
small set of representative objects that are chosen based on
well-known theoretical work.

« Based on the top-down approach, we build an end-to-end
join system capable of processing near neighbor joins over
billions of objects without requiring detailed knowledge
about the join function.

e« We provide algorithmic analysis to illustrate how our
system scales while conforming to the resource constraints,
and theoretical analysis of the quality expectation.

o We conducted extensive experimental analysis over large
scale datasets to demonstrate the system’s scalability.

The rest of the paper is organized as follows. Section II
presents the related work. Section III introduces the basic
terminologies we use, the formal problem definition, and an
overview of the SAJ system. Section IV describes the tech-
nical components of SAJ. Analysis of the algorithms and the
experiments are described in Sections V and VI, respectively.
Finally, we conclude in Section VII.

II. RELATED WORK

Similarity join has been studied extensively in recent lit-
erature. The work by Okcan and Riedewald [5] describes
a cost model for analyzing database-style 6-joins, based on
which an optimal join plan can be selected. The work by
Vernica et. al. [6] is one of the first to propose a MapReduce-
based framework for joining large data sets using set similarity
functions. Their approach is to leverage the nature of set sim-
ilarity functions to prune away a large number of pairs before
the remaining pairs are compared in the final reduce phase.
More recently, Lu et. al. [7] apply similar pruning techniques
to joining objects in n-dimensional spaces using MapReduce.
Similar to [6], [7], there are a number of studies on scalable
similarity join using parallel and/or p2p techniques [8], [9],
[10], [71, [11], [12], [13], [14]. Those proposed techniques deal
with join functions in two main categories: (i) set similarity
style joins where the objects are represented as sets (e.g.,
Jaccard), or (ii) join functions that are designed for spatial
objects in n-dimensional vector space, such as L, distance.

Our work distinguishes itself in three main aspects. First, all
prior works use knowledge about the join function to perform
pruning and provide exact results. SAJ, while assuming triangle

inequality for improved result quality, assumes little about
the join function and produces best-effort results. Second,
objects in those prior works must be represented either as
a set or a multi-dimensional point, while SAJ makes no
assumption about how object can be represented. Third, the
scalability of some of these studies follows from adopting a
high similarity threshold, hence they cannot guarantee that &
neighbors are found for every object. The tradeoff is that SAJ
only provides best-effort results, which are reasonable for real
world applications that require true scalability and can tolerate
non-optimality.

Scalable (exact and approximate) similarity joins for known
join functions have been studied extensively in non-parallel
contexts [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25]. The join functions being considered include edit
distance, set similarity, cosine similarity, and L, distance.
Again, they all use knowledge about the join functions to
prune candidate pairs and avoid unnecessary comparisons.
For general similarity join, [26] introduces a partition based
join algorithm that only requires the join function to have
the metric property. The algorithm, however, is designed to
discover object pairs within e distance of each other instead of
finding k neighbors of each object. LSH has been effective for
both similarity search [27] and similarity join [28]; however,
it is often difficult to find the right hash functions.

There are some works that consider the problem of incre-
mental kNN join [29]. Since our framework is implemented
on top of MapReduce, we focus on designing a system that
scales to billions of objects using batch processing of read-
only datasets and do not consider this case.

Our work is related to techniques developed for ANN
search [30], whose hashing techniques can potentially be
leveraged in SAJ. Also focusing on search, there are several
works that use a similar notion of representative objects to
build a tree and prune the search space based on the triangle
innequality property [31], [32], [33]. Finally, our Bottom-Up
algorithm adopts the streaming clustering work in [34].

III. PRELIMINARIES & SAJ OVERVIEW

Notation Semantics
I, N =I| | The set of input objects and its size
k Desired number of near neighbors per object

n Maximum number of objects a machine
can manipulate in a single task, n < N

m Number of clusters per local partition, m < n

P Number of top object pairs maintained for
each TD iteration, P < N2

p Maximum number of object pairs sent to a
machine in each TopP iteration, p > P

Fy Required user-provided join function:
Fy:IxI—R

Fp Optional partition function: Fp : I — string

Fr Optional pair ranking function:

Fr:(I,I)x (I,I) >R

TABLE I
ADOPTED NOTATION.

Table I lists the notation we use. In particular, n is a
key system parameter determined by the number of objects
a single machine task can reasonably manipulate. That is: (i)
the available memory on a single machine should be able to
simultaneously hold n objects; and, (ii) the task of all-pairs
comparison of n objects, which is an O(n?) operation, should
complete in reasonable amount of time. For objects that are
large (i.e., tens of megabytes), n is restricted by (i), and for
objects that are small, n is restricted by (ii). In practice, n
is either provided by the user directly or estimated through
some simple sampling process. Another key system parameter
is P, which controls the number of top pairs processed in each
iteration by the TD phase (cf. Section IV-B). It is determined
by the number of available machines and the user’s quality
requirements: increasing P leads to better near neighbors for
each object, but demands more machines and longer execution
time. It is therefore a critical knob that balances result quality
and resource consumption. The remaining notation is self-
explanatory, and readers are encouraged to refer to Table I
throughout the paper.

We build SAJ on top of MapReduce [4] which is a widely-
adopted, shared-nothing parallel programming paradigm with
both proprietary [4] and open source [35] implementations.
The MapReduce paradigm is well suited for large scale offline
analysis tasks, but writing native programs can be cumbersome
when multiple Map and Reduce operations need to be chained
together. To ease the developer’s burden, high level languages
are often used such as Sawzall [36], Pig [37], and Flume [38].
SATJ adopts the Flume language.

Our goal for SAJ is a super-scalable system capable of per-
forming joins for billions of objects with a user provided com-
plex join function, and running on commodity machines that
are common to MapReduce clusters. Allowing user provided
complex join functions introduces a significant new challenge:
we can no longer rely on specific pruning techniques that
are key to previous solutions such as prefix filtering for set
similarity joins [6]. Using only commodity machines means
we are required to control the amount of computation each
machine performs regardless of the distribution of the input
data. Performing nearest neighbor join under the above two
constraints is infeasible because of the quadratic nature of
the join operation. Propitiously, real-world applications do not
require optimal solutions and prefer best-effort solutions that
can scale, which leads us to the near neighbor join approach.

A. Problem Definition

We are given input I = {o;}}¥, where N is very large
(e.g. billions of objects); a user-constructed join function F'y :
I'xI — R that computes a distance between any two objects in
1, and that we assume no knowledge except that F; satisfies
the triangle inequality property (for SAJ to provide quality
expectation); a parameter k indicating the desired number of
neighbors per object; and machine resource constraints. The
two key resource constraints are: 1) the number of objects each
machine can be expected to perform an all-pairs comparison
on; and 2) the maximum number of records each Shuffle phase

Merge

Fig. 1.

Overview of SAJ with Three Levels.

in the program is able to handle, which can be derived from
the number of machines available in the cluster.

We produce output O = {(0; — R;)}X_, where R; is the set
of k objects in I we discover to be near o; according to F';y. For
each o;, let R;“”a‘es‘ be the top-k nearest neighbors of o;; i.e.,
V(j, k), 05 ¢ RI 0 € RIS Fj(0i,05) > Fj(0s,01).
Let F; = AVGoeRi (FJ (Oi, O)) — AVGOecharcal(FJ(Oi, O)) be
the average distance error of R;. Our system attempts to
reduce AVG;(F;) in a best-effort fashion while respecting the
resource constraints.

B. Intuition and System Overview

The main goal of SAJ is to provide a super scalable join
solution that can be applied to user provided complex join
functions, and obtain results that, despite being best-effort, are
significantly better than a random partition approach would
obtain and close to the optimal results.

To achieve higher quality expectation than a ran-
dom approach, we assume the join functions to sat-
isfy the triangle inequality property (similar to previ-
ous approaches [7]). Given that, we make the follow-
ing observation. Given five objects 0g,,04,,0m, 0y, , Oy,, if
Fy(03,,0m) < F(0g,,0m) and Fj(0y,,0m) < Fj(0y,,0m),
then Prob[F(0z,,0,,) < Fj(0g,,0y4,)] is greater than
Prob[Fj(04,,0y,) < Fj(0g,,0y,)]. In other words, two ob-
jects are more likely to be similar if they are both similar to
some common object. We found this to hold for many real-
world similarities even those complex ones provided by the
users. This observation leads to our overall strategy: increase
the probability of comparing object pairs that are more likely
to yield smaller distances by putting objects that are similar
to common objects on the same machine.

As illustrated in Figure 1, SAJ implements the above strategy
using three distinct phases: BU, TD, and Merge. The BU phase
(cf. Section IV-A) adopts the Divide-and-Conquer strategy
of [34]. It starts by partitioning objects in I, either randomly or
based on a custom partition function, into sets small enough to
fit on a single machine. Objects in each partition are clustered
into a small set of representatives that are sent to the next
iteration level as input. The process repeats until the set of
representatives fit on one machine, at which point an all-pairs
comparison of the final set of representatives is performed to
conclude the BU phase. At the end of this phase, in addition
to the cluster representatives, a preliminary list of near-k
neighbors (K < n) is also computed for each object in I as a
result of the clustering.

Types | Definitions
Object | user provided
ID | user provided

Obj | <ID id, Object raw_obj, Int level, Int weight>
Pair | <ID from_id, ID to_id, Double distance>
Sajobj | <Obj obj, ID id_rep, List<Pair> pairs>

TABLE II
DEFINITIONS OF DATA TYPES USED BY SAJ.

The core of SAJ is the multi-iteration TD phase (cf. Sec-
tion IV-B). At each iteration, top representative pairs are
chosen based on their similarities through a distributed TopP
computation. The chosen pairs are then used to fetch candidate
representative pairs from the corresponding BU results in
parallel to update each other’s nearest neighbor lists and to
generate the top pairs for the next iteration. The process
continues until all levels of representatives are consumed and
the final comparisons are performed on the non-representative
objects. The key idea of SAJ is to strictly control the number of
comparisons regardless of the overall input size, thus making
the system super scalable and immune to likely input data
skew. At the end of this phase, a subset of the input objects
have their near-k neighbors from the BU phase updated to a
better list.

Finally, the Merge phase (cf. Section IV-C) removes obso-
lete neighbors for objects whose neighbors have been updated
in the TD phase. While technically simple, this phase is
important to the end-to-end pipeline, which is only valuable
if it returns a single list for each object.

IV. THE SAJ SYSTEM

For ease of explanation, we first define the main data types
adopted by SAJ in Table II. Among the types, Object and
ID are types for the raw object and its identifier, respectively,
as provided by the user. Obj is a wrapper that defines
the basic object representation in SAJ: it contains the raw
object (raw_obj), a globally unique ID (id), a level (for
internal bookkeeping), and the number of objects assigned
to it (weight). Pair represents a pair of objects, which
consists of identifiers of the two objects and a distance
between them?, which is computed from the user provided F';.
Finally, SajObj represents the rich information associated
with each object as it flows through the pipeline, including its
representative (i.e., 1d_rep) at a higher level and the current
list of near neighbors (pairs).

In the rest of this section, we describe the three phases of
SAJ in details along with the example shown in Figure 2(A).
In our example, the input dataset has N = 16 objects that are
divided into 4 clusters. We draw objects in different clusters
with a different shape, e.g., the bottom left cluster is the square
cluster and the objects within it are named s; through s4. The
other three clusters are named dot, cross, triangle, respectively.

3For simplicity, we assume Fy is directional, but SAJ works equally on
non-directional join functions.

20 3 zx
egj0 1% {d,,d,} {dy,d,}
. .d Cx st pdd) < x
4 4% {s,} {d,,c,}
1D 7 {c ’t ’t } ey
| s 2 At 23 (6c) < x (CS'C4)<
H; A, {c4,s3} ©
(A)

d1 Cy t, Sq
d, ¢, d, ss | &
NN NN }<’ N
dyd,cp s, d, clt1 S30c 3ty sy | daty ty sy
purple blue green

Fig. 2. An End-to-End Example: (A) The input dataset with 16
objects, roughly divided into 4 clusters (as marked by shape); (B)
BU phase; (C) TD phase.

We use n = 4, m = 2, i.e., each partition can handle 4 objects
and produce 2 representatives, and set k = 2, P = 2.

A. The Bottom-Up Phase

Algorithm 1 The BU Pipeline.

Require: I, the input dataset; N, the estimated size of I;
k,n,m, Fp, F; as described in Table 1.

1: Set<Object> input = Open([);

2: Set<SajObj> current = Convert(input);
3: level =0, N' = N;
4
5

: while N > n do
MapStream<String,SajObj> shuffled =

Shuffle(current, N’, n, Fp));

6: Map<String,SajoObj> clustered =
PartitionCluster(shuffled, m, k, Fy);

7: current = Materialize(clustered, level);

8: level++, N' = N' / (n/m);

9: end while

Return: current, the final set of representative objects with

size < n; level, the final level at which BU phase stops,
BUy, BUy, ..., BUeyel, sets of SajObj objects that are ma-
terialized at each BU level.

Algorithm 1 illustrates the overall pipeline of the multi-
iteration BU phase, which is based on [34]. The algorithm
starts with converting the input ObJjects into SajObjs in
a parallel fashion (Line 2), setting the default values and
extracting a globally unique identifier for each object. After
that, the algorithm proceeds iteratively. Each iteration (Lines
5-9) splits the objects into partitions, either randomly or using
Fp, and from each partition extracts a set of representative
objects (which are sent as input to the next iteration) and writes
them to the underlying distributed file system along with the
preliminary set of near-k neighbors. The BU phase concludes
when the number of representative objects falls below n.

The example of Figure 2 will help illustrate. The objects
are first grouped into partitions (assume F'; is random). The
partitions are indicated by the color (purple, red, green, or
blue) in Figure 2(A), as well as the groups in the bottom level
in Figure 2(B). Given the input partitions, the first iteration of
the BU phase performs clustering on each partition in parallel
and produces 2 representatives, as indicated by the middle
level in Figure 2(B). As to be described in Section IV-A, two
pieces of data are produced for each object. First, a preliminary
list of near neighbors is computed for each object regardless
whether it is selected as a representative. Second, one of the
representatives, which can be the object itself, is chosen to
represent the object. For example, object do, after the local
clustering, will have its near-k list populated with {d;,cs}
and be associated with representative d;. Both are stored into
the result for this BU iteration level (BUj). The first iteration
produces 8 representative objects, which are further partitioned
and clustered by the second iteration to produce the final set
of representatives, {d1,c4,t2,$1}, as shown in the top level
of Figure 2(B).

At the core of the BU phase is PartitionCluster shown in
Algorithm 2. It is executed during the reduce phase of the
MapReduce framework and operates on groups (i.e., streams)
of SajObjs grouped by the Shuffle function. Each stream
is sequentially divided into partitions of n (or less) objects
each. This further partitioning is necessary: while Fp aims
to generate groups of size n, larger groups are common
due to skew in the data or improperly design Fp. Without
further partitioning, a machine can easily be overwhelmed by
a large group. For each partition, PartitionCluster performs
two tasks. First, it performs an all pairs comparison among the
objects using F;. Since each object is compared to (n — 1)
other objects, a preliminary near-k neighbors are stored as a
side effect (we assume k < n). Second, it applies a state-
of-art clustering algorithm (e.g., Hierarchical Agglomerative
Clustering [39]) or one provided by the user, and identifies
a set of m cluster centers. The centers are chosen from
the input objects as being closest to all other objects on
average (i.e., medoids). Each non-center object is assigned to
a representative, which is the cluster center closest to it.

Finally, the Materialize function writes the Sa 7Ob j objects,
along with their representatives and preliminary list of near
neighbors, to the level-specific output file (e.g., BUy) to
be used in the TD phase later. It also emits the set of
representative SajOb 7 objects to serve as the input to the
next iteration.

The final result of the BU phase is conceptually a tree with
log,, /m(N) levels and each object assigned to a representative
in the next level up. We note that each iteration produces an
output of size (n/m) times smaller than its input and most
datasets can be processed in a small number of iterations with
reasonably settings of n and m.

a) Further Discussion: When a user provided Fp is
adopted for partition, it is possible extreme data skew can
occur where significantly more than n objects are grouped
together and sent to the same reducer. Although PartitionClus-

Algorithm 2 Bottom-Up Functions.
Shuffle(objects, N, n, Fp)
Require: objects, a set with objects of type SajoObj;
1: Map<String,SajObj> shuffled;
2: for each o € objects do
3: if Fp # empty then

4: shuffled.put(Fp(0.obj.raw_obj), 0);
5. else

6: shuffled.put(Random[0, [N/n]), 0);
7. end if

8: end for

9: return shuffled;

PartitionCluster(shuf fled, m, k, Fy)

Require: shuf fled, a map with stream of objects of type SajObj;
1: for each stream € shuf fled do
2: count = 0;

3 Set<SajOb3j> partition = ()

4 while stream.has_next() do

5: while count < n do

6: partition.add(stream.next());

7 end while

8: Matrix<ID, ID> matrix = (J; // distance matrix

9: for 0 < i,5 < |partition|,i # j do

10: from = partition[i], to = partition[j];

11: d = F;(from.obj.raw_ob7j, to.obj.raw_ob7j);
12: matrix[from.obj.id, to.obj.id] = d;

13: Insert(from.pairs, Pair(from.obj.id, to.obj.id,

d));

14: if |from.pairs| > k then

15: RemoveFurthest(from.pairs);

16: end if

17: end for

18: C = InMemoryCluster(matrix, partition, m);

19: for each o € partition do
20: AssignClosestCenterOrSelf(o.id_rep, C);
21: EMIT(o);
22: end for
23: count = 0, partition = (J; // reset for the next partition
24: end while
25: end for

Materialize(clustered, level): MapFunc applied to one record at
a time.
Require: clustered, a set with objects of type Sa jObJ;
1: for each o € clustered do
2: if 0.0bj.id == 0.1d_rep then

3 EMIT (0); // this object is a representative
4 end if
5: WriteToDistributedFileSystem(BU, ¢y, 0);
6: end for

ter ensures that the all pairs comparison is always performed
on no more than n objects at one time, the reducer can still
become overwhelmed having to handle so many objects. When
SAJ detects this, it uses an extra MapReduce round in Shuffle
to split large partitions into random smaller partitions before
distributing them. We also use a similar technique to combine
small partitions to ensure that each partition has more than
(n/2) objects. The details are omitted due to space.

The partition function creates groups of objects, possibly
greater than n in size due to data skew. We relax the constraint

of each partition being exactly n objects and guarantee that
each partition is no less than 5 objects and no more than n
objects. To achieve this, we look ahead the stream to and if
there are more than (1 + %)n objects, we group the first n
objects. If there are less than (1+ 1)n, the objects are divided
into t\(xi(i ISqT:lal groups. This way, the last two partitions will

have ~—— objects, with 0 < b < %

B. The Top-Down Phase

During the BU phase, two objects are compared if and only
if they fall into the same partition during one of the iterations.
As a result, two highly similar objects may not be matched.
Comparing all objects across different partitions, however, is
infeasible since the number of partitions can be huge. The
goal of SAJ is therefore refining the near neighbors computed
from the BU phase by selectively comparing objects that are
likely to be similar. To achieve that goal, the key technical
contribution of SAJ is to dynamically compute top-P pairs
and guide the comparisons of objects. A set of closest pairs
of representatives can therefore be used as a guide to compare
the objects they represent. The challenge is how to compute
and apply this guide efficiently and in a scalable way: the TD
phase is designed to address this.

Algorithm 3 The Top-Down Pipeline

Require: BUg, BU1,...,BUy, the level-by-level objects of type
SajoObj produced by the BU phase; P, p, Fr, F'; as described
in Table 1.
/I we first declare some variables used in each iteration
1: Map<String,SajObj> from_cands, to_cands; // candidate
objects from different partitions to be compared.
2: Set<Pair> bu_pairs, td_pairs; // pairs already computed by
BU or being computed by TD .
/I get the top-p pairs from the final BU level
Set<Pair> top = InMemoryTopP(BUy, P, F5, Fr);
for level = (f-1) — 0 do
5: (from_cands, to_cands, bu_pairs) =
GenerateCandidates(BU,cyei, top);
/I define type Set<sajopj> as SSO for convenience
6: Map<String,(SSO, SSO)> grouped =
Join(from_cands, to_cands);
/I CompareAndWrite writes to T'Djeypel
7. td_pairs = CompareAndWrite(grouped, F;, level);
8: Set<Pair> all_pairs = bu_pairs U td_pairs;
9: if level > 0 then

s w

10: top = DistributedTopP(all_pairs, P, p, Fr);
11: end if
12: end for

Return: T'Dy,TD1,...,TDy, sets of SajObj objects that are
materialized at each TD level.

Algorithm 3 illustrates the overall flow of the TD phase.
It starts by computing the initial set of top-P pairs from the
top-level BU results (Line 3). The rest of the TD pipeline
is executed in multiple iterations from top to bottom, i.e., in
reverse order of the BU pipeline. At each iteration, objects
belonging to different representatives and different partitions
are compared under the guidance of the top-P pairs com-
puted in the previous iteration. Those comparisons lead to

refinements of the near neighbors of the objects that are
compared, which were written out for the Merge phase. To
guide the next iteration, each iteration produces a new set of
top pairs in a distributed fashion using DistributedTopP shown
in Algorithm 4.

The example of Figure 2 will help illustrate. The phase
starts by performing a pair-wise comparison on the final
set of representatives and produces the top pairs based on
their similarities (as computed by F;). Then, as shown in
Figure 2(C), for both objects in a top pair, we gather the
objects they represent from the BU results in a distributed
fashion as described in Section IV-B. For example, the pair
(t2,cq) guides us to gather {cs,ta,t4} and {c4, s3}. Objects
gathered based on the same top pair are compared against
each other to produce a new set of candidate pairs. From
the candidate pairs generated across all current top pairs, the
DistributedTopP selects the next top pairs to guide the next
iteration. The process continues until all the BU results are
processed. The effect of the TD phase can be shown through
the trace of object dy in our example. In the first BU iteration,
ds is compared with dy,cy4, S and populates its near-k list
with {d;,c4}. Since ds is not selected as a representative, it
is never seen again, and without the TD phase, this is the
best result we can get. During the TD phase, since (d1,dy) is
the top pair in the second iteration, under its guidance, ds is
further compared with dy, ¢1, leading to d4 being added to the
near-k list for dy. The effects of P can also be illustrated in
this example. As P increases, the pair (dy, s1) will eventually
be selected as a top pair, and with that, do will be compared
with d3, s1, leading to dz being added to its final near-k list.

Each iteration of the TD phase uses two operations, Gener-
ateCandidates and CompareAndWrite shown in Algorithm 5.
GenerateCandidates is applied to the objects computed by the
BU phase at the corresponding level. The goal is to identify
objects that are worthy of comparison. For each input object,
it performs the following: if the representative of the object
matches at least one top pair, the object itself is emitted as the
from candidate, the t o candidate, or both, depending how the
representative matches the pair. The key is chosen such that,
for each pair in top, we can group together all and only those
objects that are represented by objects in the pair. We also
emit the near neighbor pairs computed by the BU phase. It is
necessary to retain those pairs because some of the neighbors
may be very close to the object, and because those neighbors
and the input object itself are themselves representatives of
objects in the level down.

The choice of the emit key, however, is not simple. Our goal
is that, for each pair in top, group together all and only those
objects that are represented by objects in the pair. This means
the key needs to be unique to each pair even though we don’t
have control over the vocabulary of the object ID*. A simple
concatenation of the two object IDs do not work. For example,
if the separator is “|”, then consider two objects involved
in the pair with IDs “abc|” for from and “|xyz” for

“Enforcing a vocabulary can be impractical in real applications.

Algorithm 4 InMemory & Distributed Top-P Pipelines.

Algorithm 5 Top-Down Functions.

InMemoryTopP(O, P, F;, Fr): Computing the top-P pairs.
Require: O, the in-memory set with objects of type SajoObj;
P, Fy, Fr as described in Table I.
1: Set<Pair> pairs = ()
2: for i, =0— (|O| —1),i # j do
3: Pair pair = (O[i].obj.id, O[j].obj.id,
F;(Oli].obj.raw_ob3j, O[j]l.obj.raw_obj));
4: pairs.Add(pair);
5: end for
6: top_pairs = TopP(pairs, P, Fir)
Return: top_pairs
DistributedTopP(pairs, p, P, F'r): Computing the top-P pairs using
multiple parallel jobs.
Require: pairs, the potentially large set of object pairs of type
Set<Pair>; p, P, Fr as described in Table I.
1: num_grps = estimated_size(pairs)/p ;
2: Set<Pair> top; // the intermediate groups of top-P pairs, each
of which contains < P pairs.
top = pairs;
while num_grps > 1 do
Set<Pair> new_top;
for 0 < g < num_grps do
new_top.add(TopP(topy, P, Fr)); // Run TopP on g part
of top
8: end for
9: num_grps = Max(1, num_grps/p);
10: top = new_top;
11: end while
Return: top

TopP(pairs, P, Fr): Basic routine for Top-P computation.
Require: pairs, Set or Stream of object pairs of type Pair; P, Fr
as described in Table I.
I: static Heap<Pair> top_pairs = Heap(), Fr); // A heap for
keeping P closest pairs, where the pairs are scored by Fr.
2: for pair € pairs do
3. top_pairs.Add(pair);
4
5

A

if top_pairs.size() > P then
: top_pairs.RemoveFurthest();
6: end if
7: end for
Return: Set(top_pairs)

to. Simple concatenation gives us a key of “abc| | |xyz”,
which is indistinguishable from the key for two objects with
IDs “abc| |” and “xyz”. The solution we came up with is
to assign the key as “len:id_from|id_to”. With this
scheme, we will generate two distinct keys for the above
example, “4:abc| | |xyz” and “5:abc| | |xyz”. We can
show that this scheme generates keys unique to each pair
regardless of the vocabulary of the object IDs.

CompareAndWrite performs the actual comparisons for each
top pair and this is where the quality improvements over the
BU results happen. The inputs are two streams of objects,
containing objects represented by from and to of the top
pair being considered, respectively. An all-pair comparison is
performed on those two streams to produce new pairs, which
are subsequently emitted to be considered in the top-P. During
the comparison, we update the near neighbors of the two
objects being compared if they are closer to each other than the

GenerateCandidates(BU,cyer, top)

Require: BUjcyel, a set of Bottom-Up result of type SajObj; top,
the top-P closest pairs (of type Pair) computed from the
previous iteration.

. static initialized = false; // per machine static variable.

: static Map<String, List<Pair>> from, to; / per ma-
chine indices for object IDs and their top pairs.

3: if not initialized then

4: for each p € top do

5: from.push(p.id_from, p);

6.

-

8

[\

to.push(p.id_to, p);
end for
. initialized = true;
9: end if
10: Map<String,SajObj> from_cands, to_cands;
11: Set<Pair> bu_pairs;
12: for each o0 € BUjcyer do
13: if from.contains(o.id_rep) or to.contains(o.1d_rep) then

14: for each pyrom € from.get(o.1d_rep) do
15: from_cands.put(Key(p from), 0);
16: end for

17: for each p;, € to.get(o.1d_rep) do
18: to_cands.put(Key(pto), 0);

19: end for

20: else

21: for each py, € o.pairs do

22: bu_pairs.add(pyw);

23: end for

24: end if

25: end for

Return: from_cands, to_cands, bu_pairs;

CompareAndWrite(grouped, F,level)

Require: grouped, a set of pairs (from_cands, to_cands), two
streams of type Stream <SajOb3j> for objects represented by
objects in one of the top-P pairs; Fj,level, as described in
Algorithm 3.

1: Set<SajoObj> updated; // tracking the objects whose top-P
pairs have been updated.

2: Set<Pair> td_pairs;

3: for each (from_cands,to_cands) € grouped do

4: for each oy € from_cands, o¢ € to_cands do

5: Pair p¢q = (0f.0bj.id, 0t.0b3j.1id,
Fj(oy.obj.raw_obij, o;.obj.raw_ob3j));

6: if UpdateRelatedPairs(of.pairs, ptq) then

7: updated.add(oy); // updated oy’s near-k related pairs

8: end if

9: if UpdateRelatedPairs(o;.pairs, pta) then

10: updated.add(o;); // updated o:’s near-k related pairs

11: end if

12: td_pairs.add(psq);

13: end for

14: end for

15: WriteToDistributedFileSystem(7"Dj¢,.;, updated);
Return: td_pairs;

existing neighbors they have. The updated objects are written
out as the TD results.

All the produced pairs are union’ed to produce the full set
of pairs for the level. This set contains a much larger number
of pairs than any single machine can handle. We need to
compute the top-P closest pairs from this set efficiently and in
a scalable way, which is accomplished by the DistributedTopP

function.

C. The Merge Phase

The Merge phase produces the final near-kneighbors for
each object by merging the results from the BU and TD phases.
This step is necessary because: 1) some objects may not be
updated during the TD phase (i.e., the TD results may not
be complete), and 2) a single object may be updated multiple
times in TD with different neighbors. At the core of Merge is
a function, which consolidates the multiple near neighbor lists
of the same object in a streaming fashion.

V. THEORETICAL ANALYSIS
A. Complexity Analysis

In this section we show the number of MapReduce iterations
is O(log(N/n)log((kN + n®P)/p)/log(n/m)log(p/P)).
and we bound the work done by the tasks in each of the BU,
TD and Merge phases.

MR Iterations. Let L be the number of MapReduce iterations
in the BU phase. Suppose at each iteration ¢ we partition
the input from the previous iteration into L, partitions. Each
partition R has size |mL;_1/L;| since m representatives from
each of the L;_; partitions are sent to the next level. The
number L; is chosen such that n/2 < |R| < n ensuring that
the partitions in that level are large but fit in one task (i.e. do
not exceed n). This implies that at each iteration, we reduce
the size of the input data by a factor ¢ = L;_1/L; > n/(2m).
The BU phase stops at the first iteration whose input size is
< n (and w.Lo.g. assume it is at least n/2). Hence, the number
of iterations is at most:

< log(2N/n)

L= log (N) = log,(n/2) = log.(2N/n) < {Zr 00N

For example, if N = 10%, n = 103, and m = 10, then L = 4.

Now, each iteration ¢ in the TD phase consumes the output
of exactly one iteration in the BU phase, and produces O(FE)
object pairs, where £ = (nL;_; — P)k + n?P). These
account for both the pairs produced by the comparisons and
the near neighbors of the objects. The top P of these pairs
are computed via a MapReduce tree similar to that of the BU
phase. Using analysis similar to the above and recalling the
definition of p, the number of iterations in this MR tree is
O(log(E/p)/log(p/P)). Hence, using L; < N/n, the total
number of iterations in the TD phase is,

log[1, E/p\ ., (Llog((kN +n>P)/p)
O< log(»/P))‘O(oy)"

For illustration, going back to our example, if P = 107, p=
109, and k = 20, then the number of iterations in the TD
phase (including DistributedTopP) is 16, among which only
the first few iterations are expensive.

Time Complexity. In the BU phase, each Reducer task
reads n objects, clusters them and discovers related pairs
in O(n?) time. It then writes the m representatives and
the n clustered objects (including the % near neighbors
embedded in each) in O(n + m) time. Thus, the running

time of each task in this phase is bounded by O(n?). Let
M be the number of machines. The total running time of
the BU Reduce Phase is then O(Y." [L;/M]n?) which
is O(n? Y.L o N/(Mn)(m/n)") = O(nN/(M(1 — m/n))).
Note at each level i in we shuffle at most N (2m/n)® objects.

In the TD phase, each Mapper task reads the P top pairs
as side input and a stream of objects. For each object, it
emits 0 up to P values; however in total, the Map phase
cannot emit more than 2Pn objects to the Reduce phase.
These are shuffled to P Reducer tasks. The Mappers also
emit O((nL;_1 — P)k) near neighbor pairs for objects whose
representatives were not matched to the DistributedTopP com-
putation. Each Reducer task receives at most 2n clustered
objects and performs O(n?) distance computations. It updates
the near neighbors in the objects that matched in O(n? + nk)
time. Finally, it writes these clustered objects in O(n) time
and then emits the O(n?) newly computed related pairs.
With M machines, the total Reduce phase running time in
each level is then O(P(n? + nk)/M). Finally, during the
corresponding DistributedTopP computation, each task reads
O(p) near neighbors and returns the top P in time linear in p.
Hence, each MapReduce iteration in this computation takes
time O(E/(pM)) (where E is defined above).

Conceptually, the Merge phase consists of a single MapRe-
duce where each reducer task processes all the instances of
an object (written at different levels in BU and TD) and
computes the final consolidated %k near neighbors for the
object. The total number of objects produced in the BU phase
is Zfzo N (m/n)%; whereas the total produced in the TD phase
is bounded by nPL. Hence, the number of objects that are
shuffled in this phase is nPL+ N/(1—m/n). Note that in the
worst case, the TD phase will produce up to P instances for the
same object in each of the L levels, resulting in a running time
of O(kPL) for the reducer task with that input. To ameliorate
this for such objects, we can perform a distributed computation
to compute the top k.

B. Quality Analysis

Proving error bounds on the quality of the near neighbors
identified by SAJ w.r.t. optimal nearest neighbors turns out to
be a difficult theoretical challenge. For this paper, we provide
the following Lemma as an initial step and leave the rest of
the theoretical work for the future. In Section VI, we provide
extensive quality analysis through empirical studies.

Lemma 1: Assume m, the number of clusters in the BU
phase, is chosen appropriately for the data. For any two objects
a and b, if a’s neighbors are closer to a than b’s neighbors are
to b, then SAJ (specifically the TD phase) favors finding a’s
neighbors as long as the number of levels in the BU phase is
at least 3. Further, the larger P is, the more of b’s neighbors
will be updated in the TD phase.

PROOF SKETCH. The theorem is essentially a consequence
of the inter-partition ranking of distances between compared
pairs at each level in the TD phase, and the cut-off rank P.

A good clustering is needed so that dense sets of objects have
a cluster representative at the end of the BU phase. Since
SAJ’s BU phase is based on [34], we know that the set of
representatives at the top is near optimal (note that we stop
the BU computation when the representatives fit in a machine’s
memory, however this set will contain the final set of cluster
representatives). The minimum number of levels is necessary
since the representatives of dense sets of objects may be far
from all other representatives at the end of the BU phase
(they will also have fewer representatives), hence they may not
be chosen in the initial TopP step. However, such pairs will
participate in subsequent levels since they are output. The pairs
compute with all other pairs at the same level to be included
in the following TopP. This per-level global ranking causes far
pairs to drop from consideration. The larger the P, the more
chance these pairs have to be included in the TopP. O

For example, suppose the data contains two well-separated
sets of points, R, and Ry where R; is dense and points in
R are loosely related. Also, let m = 4 and P = 1. The BU
phase will likely end up with one representative from R;, call
it r1, and 3 from Ry, 191, 722, and r93. Since R and Ry are
well separated, r; will not participate in the pair chosen at the
top level. However, (r,r1) for r € R; will be considered and
since the points are dense, all pairs from Ry will drop from
consideration, and the neighbors computed for R will thus
not be updated in the TD phase.

A refinement to SAJ is suggested by this theorem. Given
the output of the algorithm, objects with far neighbors may
have nearer neighbors in the data set, however they were not
compared with these neighbors as the pairs did not make
the distance cut-off P. Consider the N/2 objects with the
relatively nearest neighbors (here, the factor can be chosen
as desired), and remove them from the set. Now run SAJ on
the remaining objects. The newly computed object neighbors
from the second run must be merged with their neighbors
that were computed in the first run. These refinements can
be continued for the next N/4 objects and so on as needed.
A complementary minor refinement would be to compute a
TopP+ list at each level that reserves a small allowance for
large distances to be propagated down.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate SAJ via comprehensive exper-
iments on both scalability (Section VI-B) and quality (Sec-
tion VI-C). We begin by describing the experimental setup.

A. Experimental Setup

Datasets: We adopt three datasets for our experiments,
DBLP, PointsOfInterest, and WebTables.

« DBLP’: This dataset consists of citation records for about
1.7 million articles. Similar to other studies that have used
this dataset, scale it up to 40x (68 million articles) for
scalability testing by making copies of the entries and
inserting unique tokens to make them distinct. We adopt

Shttp://dblp.uni-trier.de/xml/

the same join function as in [6], which is Jaccard Similarity

over title and author tokens, but without using the similarity

threshold.

« PointsOfInterest: This dataset consists of points of interests
whose profile contains both geographical information and
content information. They are modeled after Places®. We
generate up to 1 billion objects and use a function that
combines great-circle distance and content similarity.

o WebTables: This real dataset consists of 130 million HTML
tables that is a subset of the dataset we use in our Table
Search’ project [3]. In particular, objects within this dataset
are often very large due to auxiliary annotations, resulting
in on-disk size of 2TB (after compression), which is at
least 200x the next largest dataset we have seen in the
literature. The join function for this dataset is a complex
function involving machine learning style processing of the
full objects.

With the exception of the join function for DBLP, the
join functions for both PointsOfInterest and WebTables are
impossible to analyze because they are not in L, space
or based on set similarities. In fact, our desire to join the
WebTables dataset is what motivated this study.

Baselines: Despite many recent studies [10], [7], [11], [5],
[6], [14] on the large-scale join problem, none of these is
comparable to SAJ due to our unique requirements to support
complex join functions, the ability to handle objects not rep-
resentable as sets or multi-dimensional points, and to perform
on extremely large datasets. Nonetheless, to put the scalability
of SAJ in perspective and understand it better, we compare our
system with FuzzyJoin [6], the state of the art algorithm for set
similarity joins based on MapReduce. We choose FuzzyJoin,
instead of a few more recent multi-dimensional space based
techniques (e.g., [7]), because the DBLP dataset naturally
lends itself to set-similarity joins, which can be handled by
FuzzyJoin, but not by those latter works. We only perform the
quality comparison for DBLP because neither set similarity
nor L, distance are applicable for the other two datasets.

System Parameters: All experiments were run on Google’s
MapReduce system with the number of machines in the range
of tens (1x) to hundreds (18x), with 18x being the default.
(Due to company policy, we are not able to disclose specific
numbers about the machines.) To provide a fair comparison,
we faithfully ported FuzzyJoin to Google’s MapReduce sys-
tem. We analyze the behavior of SAJ along the following
main parameter dimensions: N, the total number of objects;
k, the number of desired neighbors per object; P/N, the ratio
between the number of top pairs P and V; and the (relative)
number of machines used. Table III summarizes the default
values for parameters as described in Table I, except for N,
which varies for each dataset.

B. Scalability
In this section we analyze the scalability of SAJ. In particu-
lar, we use the DBLP dataset for comparison with FuzzyJoin,

Shttp://places.google.com/
"http://research.google.com/tables

Parameter n m D N k | P/N
Default Values | 105 | 10 | 108 | varies | 20 1%
TABLE III

DEFAULT PARAMETER VALUES.

Hours Time DBLP Time Per million Obj. DBLP TPO
16 T T T T T T T T T T T T 025
14 | Saj —x— Saj —%—
12 | Fuzzy | Fuzzy 94 0.2
10 1 0.15
8 I -
6 4 0.1
4+ 4
5L | 0.05
0 s T 1 1 1 1 1 1 1 1 1 1 O
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Hours TPO Hours TPO
20 T T T T 1 10
Time —— -
15 |- TPO 08 8
06 6
10
04 4
5§ 02 2
0'r . i Il Il 0 0 ¥ Il Il Il Il L Il 0
0 200 400 600 800 1000 0 20 40 60 80 100 120
PointsOfinterest N (millions) WebTables N (millions)

Fig. 3. Scalability Analysis Varying N: (top) Comparison with
FuzzyJoin over DBLP; (bottom) PointsOflnterest and WebTables.
(k=20,P/N =1%)

and the PointsOflnterest and WebTables datasets for super
large scalability analyses where the former has a skewed dis-
tribution and the latter has very large objects. The parameters
we vary are N, k, P, and machines, but not p since it is
determined by machine configuration.

Varying N. Figure 3 (top) compares the running time of SAJ
and FuzzyJoin (with threshold value 0.8 as in [6]) over the
DBLP dataset with NV varying from 1.7 million to 68 million.
The left panel shows SAJ scales linearly with increasing N
and performs much better than FuzzyJoin especially when the
dataset becomes larger. The right panel analyzes the time spent
per object, which demonstrates the same trend. The results are
expected. As the dataset becomes larger, data skew becomes
increasingly common and leads to more objects appearing in
the same candidate group, leading to straggling reducers that
slows down the entire FuzzyJoin computation. Meanwhile,
SAJ is designed to avoid skew-caused straggling reducers
and therefore scales much more gracefully. Note that a disk-
based solution was introduced in [6] to handle large candidate
groups. In our experiments, we take it further by dropping
objects when the group becomes too large to handle, so the
running time in Figure 3 for FuzzyJoin is in fact a lower bound
on the real cost.

Figure 3 (bottom) illustrates the same scalability analyses
over the PointsOfInterest and WebTables datasets. FuzzyJoin
does not apply for those two datasets due to its inability to
handle black-box join functions. Despite the different charac-
teristics of these two datasets—PointsOfInterest with a skewed
distribution and WebTables with very large objects—SAJ is
able to scale linearly for both. We note that the running time

Hours Hours

6 T T T 10 T

S5 L — K —F— 8 I B

4 r B 6 -

3F E = i

20 E ol _

1L WebTables (65 M) —»— | WebTables (65 M) —x—

0 PointlsOfInt. (|100 M) . 0 | PointsOfint. (|100 M) E

10 15 20 25 30 0.1 1 10
k P/N (%, log-scale)

Hours DBLP (68M) Hours WebTables (40 M)

18 T T 30 T T

16 | Saj —¢— 25 L Saj —x— |

14 Fuzzy

12 F g 20 1

10 - 15 -

8 I B 10]

6L] 0

4+] 5 _

2 1 1 0 1 1

1x 6x 12x 18x 1x 6x 12x 18x

Machines Machines

Fig. 4. Scalability Analysis Varying k (top-left), P (top-right), and
Number of Machines (bottom).

(overall and per-object) for WebTables is longer than that for
PointsOfInterest with the same number of objects. This is not
surprising because the objects in WebTables are much larger
and the join function much more costly. For all three datasets
we notice that time-spent per object is fairly large when the
dataset is small. This is not surprising since the cost of starting
MapReduce jobs makes the framework ill-suited for small
datasets.

Varying © and P/N. Next, we vary the two parameters
k and P and analyze the performance of SAJ over DBLP
and WebTables datasets. (The results for the PointsOflnterest
dataset are similar.) Figure 4 (top-left) shows that increasing
k up to 30 does not noticeably affect the running time of SAJ.
While surprising at first, this is because only a small identifier
is required to keep track of each neighbor and the cost of
maintaining the small list of neighbors is dwarfed by the cost
of comparing objects using the join functions.

Figure 4 (top-right) shows that the running time of SAJ
increases as the ratio of P/N increases. Parameter P controls
the number of pairs retained in the TD phase to guide the
comparisons in the next iteration. The higher the P, the
more comparisons and the better the result qualities are (see
Section VI-C for caveats). The results here demonstrate one
big advantage of SAJ: the user can control the tradeoff between
running time and desired quality by adjusting P accordingly.
In practice, we have found that choosing P as 1% of N often
achieves a good balance between running time and final result
quality.

Varying Number of Machines. Finally, Figure 4 (bottom)
shows how SAJ performs as the available resources (i.e.,
number of machines) change. We show four data points for
each set of experiments, where the number of machines range
from 1x to 18x. For both DBLP and WebTables datasets,
SAJ is able to take advantage of the increasing parallelism
and reduce the running time accordingly. As expected, the
reduction slows down as parallelism increases because of

the increased shuffling cost among the machines. In contrast,
while FuzzyJoin runs faster as more machines are added
initially, it surprisingly slows down when more machines are
further added. Our investigation shows that, as more and more
machines are added, the join function-based pruning is applied
to smaller initial groups leading to reduced pruning power,
hence the negative impact on the performance.

C. Quality

To achieve the super scalability as shown in Section VI-B,
SAJ adopts a best-effort approach that produces near neigh-
bors. In this section, we analyze the quality of the results
and demonstrate the effectiveness of the TD phase, which
is the key contributor to both scalability and quality. Since
identifying the nearest neighbors is explicitly a non-goal,
we do not compute the percentage of nearest neighbors we
produce and use Average-Distance to measure the quality
instead of precision/recall. The Average-Distance is defined
as the average distance from the produced near neighbors to
the objects: i.e., Avg;. p(Avg; g, Fs(i,j)), where each j is a
produced neighbor of object ¢ and F'; is the join function.

The tunable parameters are k£ and P (m is not tunable
because it is determined by the object size in the dataset).
We perform all quality experiments varying these parameters
over the three datasets with N = 106 objects, and analyze the
results using 1000 randomly sampled objects. We compare the
following three approaches. First, we analyze near neighbors
produced purely by the BU phase, this is equivalent to a
random partition approach and serves as the BU-Baseline.
This measurement also represents the expected distance of
two randomly selected objects. Second, we analyze the near
neighbors that SAT produces for objects that participates in at
least one comparison during the TD phase, and we call this
TD-Updated. Third, we analyze Nearest, which are the actual
nearest neighbors of the sampled objects.

Varying k. The left panel of Figure 5 shows that, for
all datasets, TD-Updated significantly improves upon BU-
Baseline by reducing the average distances. We also observe
that the distances of our near neighbors to the nearest neigh-
bors are much smaller than those of the baseline neighbors
to the nearest neighbors. This improvement demonstrates that
the TD phase has a significant positive impact on quality
and guides the comparisons intelligently. In particular, for the
PointsOfInterest dataset, even though the dataset is very dense
(i.e., all the objects are very close to each other), which means
even the baseline can generate good near neighbors (as shown
by the small average distances in the plot), SAJ is still able to
reduce the distance by 50%. For the WebTables dataset, SAJ
performs especially well due to the fact that objects in this
dataset often have a clear set of near neighbors while being
far away from the rest of the objects. Finally, as k£ goes up, the
quality degrades as expected because larger & requires more
comparisons.

Varying P. The right panel of Figure 5 shows the impact
of the TD phase when varying P. Similar to the previous

Distance Varying K Distance Varying P

- "
0.9 F ; 0.9'F E
0.8 4o O8F E
........ ' I
07 - = B 07 g e fleeeeneneee -3
0.6 W BU-Baseline —%— 06 BU-Baseline —%—
TD-Updated TD-Updated
05 Nearest ---#--- - 0.5 Nearest ---&--- ~
BU-Baseline —%— BU-Baseline —%—
TD-Updated k7] TD-Updated
01k Nearest ---&--- A g 01k Nearest ---#--- |
e 3
o
2
C
‘©
[
0 Eeoe.. [O) R W -,
1 —————————— 1 5 %
BU-Baseline ~—»— | Bl Bhseline —— |
08 L TD-Updated | 08 L TD-Updated |
' Nearest ---&--- 3 . Nearest ---#---
Qo
0.6 [4< o6} -
o
[
04l {13 o4} .
"R | ERPRPS Boeeeenn [T ' | TS | TEPRE 'EEEPRRRPREPN -
0.2 . L L 0.2 :
10 15 20 25 30 1 10 100
K P

Fig. 5. Average-Distance for DBLP (top), PointsOfInterest (middle),
and WebTables (bottom), varying k (left, P = 10000) and P (right,
k = 20) (000s), N = 10°.

experiments, for almost all values of P, TD phase significantly
improves the quality over the baseline BU-Baseline for all
three datasets even when P is set to a very small number of
1000 (except for DBLP). As expected, the quality improves as
P increases because more comparisons are being performed.
While the quality continues to improve as P approaches 10%
of N (the total number of objects in the dataset) it is already
significantly better than the baseline when P is 1%. P =
N/100 is a reasonable value for most practical datasets and it
is indeed the number we use in our scalability experiments in
Section VI-B.

Precision. Finally, we again emphasize that having nearest
neighbors is not crucial in our target application of finding
related tables on the Web. We may fail to locate any of
the most relevant tables, but the users can still be happy
with the tables we return because they are quite relevant and
much better than random tables. However, for the sake of
completeness, we also measured the percentage of nearest
neighbors produced by our system for the WebTables dataset,
as shown in Figure 6. We observe that we find a good
percentage of nearest neighbors even though this is not the goal
of SAJ. The number of nearest neighbors grows as P increases,
approaching gracefully the exact solution. The impact of the
TD phase is again significant.

We also measured the percentage of nearest neighbors for
the DBLP dataset using the default settings. The percentage
of objects that contain at least one of the true Top-2 in their
neighbor list produced by SAJ is 17.8% and the percentage of

% True-Neighbors Varying K % True-Neighbors Varying P

60 T T T 80 T
50 e
0 -] 60 |-
30 - 40 F
20 - .
10 b BU-Baseline —%— | 20 |- BU-Baseline —x—
TD—U{@ted JD-Updated
0 ¥ 0 %
10 15 20 25 30 1 10 100
K P (thousands, log-scale)
Fig. 6. True-Neighbors (%) for WebTables, varying k (left, P =

10000) and P (right, k = 20) (000s), N = 10°.
objects that contain at least one of the true Top-5 is 50.9%.

VII. CONCLUSION & FUTURE WORK

We presented the SAJ system for super scalable join with
complex functions. To the best of our knowledge, this is the
first scalable join system to allow complex join functions,
and we accomplish this by employing the best-effort near
neighbor join approach. The keys to our scalability are two-
fold. First, unlike previous parallel approaches, SAJ strictly
adheres to the machine task capacity and carefully avoids
any possible bottlenecks in the system. Second, through the
parameter P, SAJ allows the user to easily trade-off result
quality with resources availability (i.e., number of machines)
by tuning the result quality requirements. Extensive scalability
experiments demonstrate that SAJ can process real world large
scale datasets with billions of objects on a daily basis. Quality
experiments show that SAJ achieves good result quality despite
not having the knowledge of the join function.

REFERENCES

[11 A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. S. Sarma,
R. Murthy, and H. Liu, “Data warehousing and analytics infrastructure
at facebook,” in SIGMOD, 2010.

J. Dean and M. R. Henzinger, “Finding related pages in the World Wide
Web,” Computer Networks, vol. 31, no. 11-16, pp. 1467-1479, 1999.
C. Yu, “Towards a high quality and web-scalable table search engine,”
in KEYS, 2012, p. 1.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107-113, January 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

A. Okcan and M. Riedewald, “Processing theta-joins using MapReduce,”
in SIGMOD, 2011.

R. Vernica, M. J. Carey, and C. Li, “Efficient parallel set-similarity joins
using MapReduce,” in SIGMOD, 2010.

W. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient processing of k
nearest neighbor joins using MapReduce,” PVLDB, vol. 5, no. 10, 2012.
R. Baraglia, G. D. F. Morales, and C. Lucchese, “Document similarity
self-join with MapReduce,” in ICDM, 2010.

T. Elsayed et al., “Pairwise document similarity in large collections with
MapReduce,” in ACL, 2008.

Y. Kim and K. Shim, “Parallel top-k similarity join algorithms using
MapReduce,” in ICDE, 2012.

A. Metwally and C. Faloutsos, “V-SMART-Join: A scalable MapReduce
framework for all-pair similarity joins of multisets and vectors,” PVLDB,
vol. 5, no. 8, 2012.

[2]
[3]
[4]

[5]

[7]
[8]
[9]
[10]

(11]

[12]
[13]
[14]

[15]

[16]
(17]

(18]

[19]
[20]

[21]

[22]
[23]
[24]
(25]
[26]
(27]
(28]

[29]

[30]

[31]

[32]
[33]
[34]
[35]

[36]

(37]

(38]

[39]

J. C. Shafer and R. Agrawal, “Parallel algorithms for high-dimensional
similarity joins for data mining applications,” in VLDB, 1997.

S. Voulgaris and M. van Steen, “Epidemic-style management of semantic
overlays for content-based searching,” in Eruo-Par, 2005.

C. Zhang, F. Li, and J. Jestes, “Efficient parallel kNN joins for large
data in MapReduce,” in EDBT, 2012.

A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-similarity joins,”
in VLDB, 2006.

R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs similarity
search,” in WWW, 2007.

Y. Chen and J. M. Patel, “Efficient evaluation of all-nearest-neighbor
queries,” in /CDE, 2007.

N. Koudas and K. C. Sevcik, “High dimensional similarity joins:
Algorithms and performance evaluation,” IEEE Trans. Knowl. Data
Eng., vol. 12, no. 1, pp. 3-18, 2000.

S. Chaudhuri et al., “A primitive operator for similarity joins in data
cleaning,” in ICDE, 2006.

C. Xia, H. Lu, B. C. Ooi, and J. Hu, “Gorder: An efficient method for
kNN join processing,” in VLDB, 2004.

C. Xiao, W. Wang, and X. Lin, “Ed-Join: an efficient algorithm for
similarity joins with edit distance constraints,” PVLDB, vol. 1, no. 1,
pp- 933-944, 2008.

C. Xiao, W. Wang, X. Lin, and J. X. Yu, “Efficient similarity joins for
near duplicate detection,” in WWW, 2008.

C. Xiao, W. Wang, X. Lin, and H. Shang, “Top-k set similarity joins,”
in ICDE, 2009.

C. Bohm and F. Krebs, “High performance data mining using the nearest
neighbor join,” in /ICDM, 2002, pp. 43-50.

B. Yao, F. Li, and P. Kumar, “K nearest neighbor queries and knn-joins
in large relational databases (almost) for free,” in ICDE, 2010, pp. 4-15.
E. H. Jacox and H. Samet, “Metric space similarity joins,” ACM Trans.
Database Syst., vol. 33, no. 2, 2008.

A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in VLDB, 1999.

H. Lee, R. T. Ng, and K. Shim, “Similarity join size estimation using
locality sensitive hashing,” PVLDB, vol. 4, no. 6, pp. 338-349, 2011.
C. Yu, R. Zhang, Y. Huang, and H. Xiong, “High-dimensional knn joins
with incremental updates,” Geolnformatica, vol. 14, no. 1, pp. 55-82,
2010.

J. Wang, S. Kumar, and S.-F. Chang, “Sequential projection learning for
hashing with compact codes,” in ICML, 2010.

H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang, “idistance:
An adaptive b¥-tree based indexing method for nearest neighbor search,”
ACM Trans. Database Syst., vol. 30, no. 2, pp. 364-397, 2005.

T. cker Chiueh, “Content-based image indexing,” in VLDB, 1994, pp.
582-593.

P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access method
for similarity search in metric spaces,” in VLDB, 1997, pp. 426-435.
S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, “Clustering data
streams,” in FOCS, 2000.

Apache, ‘““‘apache hadoop, http://hadoop.apache.org/”.”
Available: http://hadoop.apache.org/

R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Interpreting the
data: Parallel analysis with sawzall,” Scientific Programming, vol. 13,
no. 4, pp. 277-298, 2005.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin:
a not-so-foreign language for data processing,” in SIGMOD, 2008.

C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry,
R. Bradshaw, and N. Weizenbaum, “FlumelJava: easy, efficient data-
parallel pipelines,” SIGPLAN Not., vol. 45, pp. 363-375, June 2010.
[Online]. Available: http://doi.acm.org/10.1145/1809028.1806638

A. Lukasova, “Hierarchical agglomerative clustering procedure,” Pattern
Recognition, vol. 11, no. 5-6, pp. 365-381, 1979.

[Online].

